Incorporating Scale Invariance into the Cellular Associative Neural Network
نویسندگان
چکیده
This paper describes an improvement to the Cellular Associative Neural Network, an architecture based on the distributed model of a cellular automaton, allowing it to perform scale invariant pattern matching. The use of tensor products and superposition of patterns allows the system to recall patterns at multiple resolutions simultaneously. Our experimental results show that the architecture is capable of scale invariant pattern matching, but that further investigation is needed to reduce the distortion introduced by image scaling.
منابع مشابه
A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملLocally Connected BSB Neural Networks as Associative Memories Storing Grey- Scale Images
In this paper, we introduce an associative memory storing grey scale images. It’s based on a suitable translation of the grey scale image into a Gray-coded binary image, stored in a single BSB binary neural network. The particular BSB we are going to exploit has the property of local connectivity. The chosen learning algorithm guarantees asymptotic stability of the stored patterns, low computat...
متن کاملDesign of Associative Memory for Gray-Scale Images by Multilayer Hopfield Neural Networks
In this paper a new design procedure for Hopfield associative memories storing grey-scale images is presented. The proposed architecture, with both intra-layer and inter-layer connections, is an evolution of a previous work based on the decomposition of the image with 2L gray levels into L binary patterns, stored in L uncoupled neural networks: that allows to store images with the commonly used...
متن کاملDesign Ratio-Memory Cellular Neural Network (RMCNN) in CMOS Circuit Used in Association-Memory Applications for 0.25 mm Silicon Technology
Abstract: The paper is proposed the Ratio-Memory Cellular Neural Network (RMCNN) that structure with the self-feedback and the modified Hebbian learning algorithm. The learnable RMCNN architecture was designed and realized in CMOS technology for associative memory neural network applications. The exemplar patterns can be learned and correctly recognized the output patterns for the proposed syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014